Argon Arc Welding Technology of Zirconium and Zirconium Alloy

Zirconium and zirconium alloys have excellent corrosion resistance to acid and alkali, and even surpass niobium, titanium and other metals in some media. Therefore, zirconium and zirconium alloys are gradually used as structural materials such as equipment and pipelines in the chemical industry with strong corrosion resistance due to their good corrosion resistance in recent years.

Due to the high-temperature chemical activity, zirconium and zirconium alloys can react with various elements in the air at high temperature, thus damaging their mechanical properties. Therefore, in the process of zirconium and zirconium alloy welding, the key to ensuring the quality of welding is to select a clean operating environment and strengthen the isolation and protection of welding seams and parts in the heat-affected zone.

Basic properties of zirconium and zirconium alloys

Zirconium and zirconium alloy materials mainly include R60702, R60704, and R60705. Zirconium and zirconium alloys have good welding properties and stable chemical properties at room temperature. However, its high-temperature chemical properties are very active, and it has a strong affinity for the pollution of oxygen, nitrogen, hydrogen and dust and humidity in the operating environment.

The excellent corrosion resistance of zirconium and zirconium alloys comes from the oxide film formed on the surface and depends on the integrity and firmness of the oxide film. When zirconium and zirconium alloy absorb a certain amount of oxygen, nitrogen, hydrogen, and other gas impurities, their mechanical properties and corrosion resistance will decrease sharply. Therefore, strengthening the protection of the surface of environmental dust, humidity and heat affected area and the back of the welding seam is the key element of quality control in the welding process.

Zirconium and Zirconium Alloy

Factors influencing the welding quality of zirconium and zirconium alloy

  • The tendency of weld cracks

Due to the low thermal expansion coefficient of zirconium and zirconium alloy, the volume change caused by thermal deformation and phase change is very small, and the content of sulfur, phosphorus, carbon and other impurities is very low, there is no obvious trend of cracks in the welding process. However, when the welding seam absorbs a certain amount of oxygen, nitrogen and hydrogen gas impurities, the performance of the welding seam and the heat-affected zone will become brittle. If there is stress in the welding seam, cold cracks will occur.

At the same time, hydrogen atoms have the property of diffusing and aggregating to the high-stress parts in the heat-affected zone with lower temperature, which leads to the formation of relatively weak links in these parts, which may lead to the generation of welding delay cracks.

  • Selection of welding materials

The filler wire for zirconium and zirconium alloy welding should be selected according to the principle of matching the base material composition. The surface of welding wire shall not have heavy skin, crack, the oxidation phenomenon and metal or non-metal inclusion defects. Besides, the welding wire should be cleaned and dried before use.

  • Selection of protective gas

Argon arc welding with tungsten electrode of zirconium and zirconium alloy shall adopt high purity argon with 99.999% purity and the impurity content shall meet the requirements of GB/T4842 current standards.

Due to the extremely high requirements on the purity of welding protective gas, continuous gas charging is required during the welding process, and the gas cannot be interrupted in the process; otherwise, argon charging needs to be replaced again. Therefore, the direct gas supply method using ordinary argon in a single bottle cannot meet the protection requirements. It is necessary to increase the gas supply capacity of multiple argon bottles in series and satisfy the simultaneous operation of multiple welders through the air separation cylinder.

Please visit http://www.samaterials.com for more information.

7 Methods to Toughen the Zirconia Ceramics

Zirconia ceramics are characterized by unique physical and chemical properties such as high hardness, low thermal conductivity, high melting point, resistance to high temperature and corrosion, chemical inertia and amphoteric properties. As a special ceramic material, zirconia has a broad application prospect in electronics, aerospace, aviation, and nuclear industries.

At present, the toughening methods of ceramics mainly include phase transformation toughening, particle toughening, fiber toughening, self-toughening, diffusion toughening, co-toughening and nano toughening.

  1. Phase transformation toughening

The toughening of the phase transition refers to a phase transition of t-ZrO2 of the metastable quadrilateral phase under the stress field at the crack tip, then the compressive stress is formed on the crack, which hinders the crack growth and plays a role of toughening.

Besides, external conditions (such as laser shock, fatigue fracture toughness, low temperature, grain size and content, critical transformation energy, etc.) have great influence on the toughening of zirconia ceramics. If the stress and volume produced by the phase transition are large, the product is prone to fracture. Therefore, the influence of external factors on the toughening of zirconia ceramics should be avoided in the production process.

  1. Particles toughening

Particle toughening refers to adding ZrO2 ceramic powder as a toughening agent. Although the effect is not as good as whisker and fiber, there is still a certain toughening effect if the type, size, content and matrix materials are selected properly. The advantages of particle toughening are simple and feasible, and the toughening will bring about the improvement of high-temperature strength and high-temperature creep property. The toughening mechanism of particle toughening mainly includes grain refinement and crack turning to the bifurcation.

  1. Fibre toughening

The toughening principle of fiber and whisker is that the closed stress is applied to the crack surface due to the deformation of crystal close to the crack tip, the external stress of the crack tip is offset, and the passivating crack growth is achieved, so as to play a toughening role. In addition, when the crack grows, the pulling out of the column crystal also overcomes the friction force, which also plays a role in toughening.

  1. The self-toughening

Due to the existence of columnar crystals, the fracture process of zirconia ceramics can cause the crack to deflect, change and increase the crack growth path, thus passivating the crack to increase the crack growth resistance, thus achieving the purpose of toughening.

  1. Dispersion toughening

Diffusion toughening mainly refers to the toughening of tetragonal ZrO2 particles to ceramic matrix. Besides the phase change toughening mechanism, there is also the diffusion toughening mechanism of the second phase particle. Before the crack propagation, the internal residual strain energy of the ceramics must be overcome, so as to achieve the purpose of toughening.

  1. Microcrack toughening

Microcrack toughening refers to adding ductile materials to the stress tip of the crack to generate microcracks to disperse the stress, reduce the force of the crack forward, and thus increase the toughness of the material. When phase transition occurs, residual strain energy effects and microcracks often occur. Therefore, the effect of phase transition and toughening is remarkable.

  1. Composite toughening

Composite toughening refers to the application of several toughening mechanisms in the actual toughening process of ZrO2 ceramics, so as to improve the toughening effect of ZrO2 ceramics. In the practical application process, the specific toughening mechanism is selected according to the different properties of zirconia ceramic materials to be prepared.

Please visit http://www.samaterials.com for more information.

Zirconia Ceramic Structural Parts VS Auto Parts

As we all know, a car is a product with an extremely demanding operating environment and working conditions, so the various components that make up this giant must have very superior functions. The zirconia ceramic structure has been widely used in auto parts.

Zirconia ceramic structure parts with excellent performance just make up for the lack of metal materials, so they began to be accepted by the automobile. For example, it has a long vibration tolerance of 20 grams; as parts used in combustion and exhaust systems, it can endure 50 ~ 60 ℃/S of thermal shock for a long time; due to the strong mechanical reliability of the zirconia ceramic, the failure rate is usually between 10 and 5; it can also be mass-produced and low in price, which is convenient for the formation of industrial management.

Zirconia Ceramic Structural Parts

In recent years, scientists in the international special ceramics field have developed a large number of automobile special ceramics through hard research, and experiments and industrial applications have proved that the superior mechanical properties and high-temperature chemical properties of ceramic materials have far surpassed those of metal materials or other materials. At present, the applications of zirconia ceramic structure parts in auto parts industry are as follows.

Zirconia ceramic oxygen sensor

The zirconia ceramic oxygen sensor has high mechanical properties and reliability. As a component of clean exhaust, O2 concentration in automobile exhaust is measured, and the measured value is fed back to the gas and fuel supply system of the engine to keep the fuel always in full combustion state. Since all phases of the ceramic material are partially stabilized zirconia mixed with fully cubic, tetragonal and monoclinic crystals, the mechanical properties are superior during use and the heat generated by friction can be reduced.

Zirconia ceramic valve heater

In order to make the engine burn completely when starting, a heating device, the valve heater, is installed on the suction side of the engine, which is used to heat the air so that the fuel vaporizes and mixes completely. In order to control the temperature and improve the reliability of the device, the barium titanate ceramic PTC (thermistor) is used as the valve heater. After adopting the ceramic valve heater, the engine is in full combustion state when it starts, so as to improve thermal efficiency, energy saving, and purification and exhaust efficiency.

Zirconia ceramic engine

The application of special ceramics in the automobile has been popularized by the piston engine, and there will also be an auxiliary combustion chamber, piston head, cylinder liner, cylinder head, pressurized rotor, etc. Special ceramic materials such as silicon nitride, silicon carbide, and partially stabilized zirconia are also being considered for these parts.

Zirconia ceramic engine

Zirconia ceramic sensor

The shock absorber of the high-class car is a smart shock absorber that is developed by using the positive piezoelectric effect, inverse piezoelectric effect and electrostrictive effect of sensitive ceramics. The smart shock absorber, with its ability to recognize and self-regulate the road, minimizes the vibration of cars on rough roads, making them comfortable for the passenger.

Intelligent ceramic wipers

The intelligent ceramic windshield wiper is made of barium titanate, which can automatically sense rainfall and adjust the windshield wiper to the best speed. Some other ceramic sensing elements, such as thermal, pressure, humidity and magnetic ceramic materials, can also be sensitive to temperature, humidity, condensation, anti-freezing, etc. with automatic control and adjustment.

In addition, many parts, and small devices used in automobiles are made of special ceramic materials, such as the electronic buzzer, ultrasonic vibrator, heat-absorbing glass, photocell, oil plug ring, oil seal, etc. These kinds of automobile products made of new special ceramic materials generally have high physical and chemical properties, such as anti-seismic, wear-resisting, anti-corrosion, high-temperature resistant, lightweight and easy to process and produce.

Please visit http://www.samaterials.com for more information.